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An Analytical Approach to Asymmetrical Cold Strip 
Rolling Using the Slab Method 

Y.-M. Hwang and G.-Y. Tzou 

An analytical model for general asymmetrical cold rolling is proposed to investigate the behavior of sheet 
during asymmetrical rolling using the slab analysis. Neutral points between the upper and lower rolls and 
the strip, rolling pressure distribution along the contact interface of the roll and strip, and rolling forces, 
as well as rolling torque, can be calculated easily using this model. Rolling pressure distribution, rolling 
force, and rolling torque, which are affected by various rolling conditions such as roll speed ratio, thick- 
ness reduction, front and back tension, etc., are analyzed. Additionally, the limiting rolling conditions be- 
tween reduction and roll speed ratio, or front and back tension, under which the rolling process can be 
accomplished successfully, are discussed. By comparing analytical results and experimental measure- 
ments of rolling force, it is apparent that the proposed model can successfully provide useful knowledge 
for designing the pass schedule of the asymmetrical cold strip rolling process. 
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1. Introduction 

ANALYSIS of symmetrical strip rolling, in which the pe- 
ripheral velocity and radius of the upper roll are equal to those 
of lower roll, respectively, has been discussed 11-31 in detail 
since Orowan [4] proposed a uniform plastic deformation model 
of strip rolling. The plastic delbrmation mechanism of strip 
during symmetric strip rolling at the roll-bite has been clarified. 
Recently, the asymmetrical strip rolling process, in which the 
peripheral velocity and radius of the upper roll are different 
from those of the lower roll, has been studied. This process has 
become increasingly important, because it offers benefits such 
as less rolling pressure, less rolling force, less rolling torque, 
and improved strip surface properties compared to those ob- 
tained by symmetric strip rolling. Most investigations concern- 
ing asymmetrical cold strip rolling are experimental,[ 5-121 a 
few numerical analyses were carried out using the slab method 
and the finite-element method.[ 13-15 I However, significant cal- 
culation time and computer expense are required, and use of 
this analysis in asymmetric cold strip rolling has not been well 
established. 

In this study, an analytical solution for asymmetrical strip 
roiling is proposed using the slab method. Using this approach, 
rolling pressure distribution, rolling force, and rolling torque 
can be easily and rapidly obtained. Effects of rolling speed ra- 
tio, rolling radius ratio, frictional coefficient ratio, etc., on roll- 
ing pressure distribution, rolling force, and rolling torque are 
discussed systematically. 

2. Mathematical Model 

To simplify the formulation involved in developing the 
analysis in cold rolling based on the slab method, the following 
assumptions were made: 

�9 The roll is rigid; the strip being rolled is rigid-plastic mate- 
rial. 

�9 Plastic deformation is plane-strain. 

�9 Stresses are uniformly distributed within elements. The 
vertical stress (p) and horizontal stress (q) are regarded as 
principal stresses. 

�9 Frictional coefficients between the roll and material are 
constant over the arc of contact, but the coefficient for the 
upper roll may be different from that of the lower roll. 

�9 The flow direction of the strip at the entrance and exit of the 
roll-bite is horizontal 
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Fig. 1 Schematic of mathematical model. 

�9 The total roll contact arc is small compared to the circum- 
ference of  the roll. 

These assumptions provide a physically realistic approxi- 
mation of the cold rolling processes of thin wide strip or sheet. 

2.1 Formula t ion  

Figure 1 is a schematic illustration of asymmetric strip roll- 
ing. The radius and speed of the upper roll are different from 
those of the lower roll. The plastic deformation region at the 
roll-bite is divided into three distinct regions according to the 
directions of frictional force from the upper,and lower roll ex- 
erted on the strip. These are denoted zone I for entry regions, 
zone II for the cross shear region, and zone III for the exit re- 
gion, as shown in Fig. 1. The subscripts 1 and 2 in all variables 
denote the upper and lower rolls, respectively. 

Figure 2 illustrates the stress state of a slab in zone I, in 
which the directions of the upper and lower frictional forces are 
both forward, i.e., the velocities of the upper and lower rolls are 
both faster than that of  the strip. Because the position of the 
neutral point on the upper roll is not necessarily equal to that of  
the lower roll, the direction of the frictional force from the up- 
per roll exerted on the strip may not be the same as that from the 
lower roll. 

The mathematical  expressions for the horizontal and verti- 
cal force equilibria are summarized as: 

d(hq) 
+ P l  tanOl +P2 tan 0 2 -  ('c I +'c2) = 0 [1] 

P = P l  (1 + ~-1 tan 01 )=P2  (I + ~2 tan 02) [21 

hq 
dx 

~ d s  

p2ds2  

Fig. 2 Material elements in region I. 

. hq+d(hq)  

dsl= dx 
COSOt 

dsz=  d x  
C0S192 

where q is the horizontal stress; h is the thickness; andP l  andP2 
are the normal pressure from the upper and lower roll, respec- 
tively. 191 and 02 are variable contact angles; "t I = g IP 1 and ~2 = 
g2P2 are the frictional stresses along the upper and lower roll 
boundaries,  respectively. 

Because the roll radius is much larger than the strip thick- 
ness, 1 +/altan191 and 1 + g2tan192 in Eq 2 are approximately 
equal to 1, indicating thatp  = p I = P2' 

Combin ing  Eq 1 and 2 gives: 

h dq + (p + q) dh 
dx • = ~t~l~ [3] 

where 

lae = btl + P2 

ge is the equivalent fi-ictional coefficient. 
The yon Mise's yielding criterion for plane-strain can be ex- 

pressed as 

p + q = 2k [4] 

where k is the yielding shear stress of the material. 
Substituting Eq 4 into Eq 3 and rearranging it, yields: 
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(1 + z2) d~ff + a f : 2  . 
d z  " 

where 

~ p  ~eoq 2R1R2 
a = [ae ' Req  - R 1 + "'~ 

x p 
" - 4 ~  - ' f -  2k 

- ' eq"o  

[51 

h o is the final strip thickness, and R e q  is the effective roll radius. 
Introducing parameter c0 as 

z = tan m [61 

[71 

Equation 5 becomes 

df + a f=  2 tanm 
dm 

Traditionally, when 0 is small, tan o in Eq 7 can be approxi- 
mately expressed as 

tan m ~ m [8] 

However, more precisely, one adopts 

m 3 
t a n m -  m + - -  [91 

3 

[101 

The solution of the differential Eq 7 is 

T 1 f =  c e  am + "L T -  + , 0 ,  - ,  

where 

2 1 2 
s =  I + 7  ' t = - + - a  a 3 

where c is the integral constant determined by the boundary 
condition. 

In zone III, because the direction of the friction forces is 
backward, i.e., the strip velocity is faster than the velocity of the 
upper and lower roll, the form of the differential equation in 
zone III is the same as that in zone I. Only the effective coeffi- 
cient of friction [ae is replaced by I.te = -~t 1 - [a 2. 

In zone II, because the directions of the frictional forces 
cross each other, i.e., the strip velocity is faster than the velocity 
of the upper roll and slower than the velocity of the lower roll 
(in the case of V 2 > VI), ~t e = -la 1 + ~t 2. 

2.2  B o u n d a r y  C o n d i t i o n s  

Assuming that the velocity of the lower roll is faster than 
that of the upper roll, the neutral point of the upper roll is de- 
noted by Xnl ,  and the neutral point of the lower roll is denoted 
Xn2. Thus, the boundary conditions for three distinct regions 
can be expressed as follows: 

2.2.1 Z o n e  III  (0 _<x _< X,,z) ~ = - [a t  - gz 

Atx  = 0 ( o r m =  0) 

qo 
./0 = 1 - 2 ~  

where q o  is the front tension exerted on the strip. 
From this boundary condition, the integral constant  c 3 in Eq 

10 can be obtained as 

2t 3 
c3 =fo + - -  

a 3 
[ l l l  

where 

1 2 2 
t3 = ~ 3  + ~ , s 3  = 1 + ~  

a 3 a 3 

Hence, the specific rolling pressure(fil l)  in zone iII  is ex- 
pressed as 

a3 ) + a3LT - ~-~3 + s3m - t3 
[121 

2.2.2  Z o n e  I (Xnl <_X <_ L) [ae = ~1 + ~t2 

A t x  = L (or m = o i = t a n - l L / ~ e q  h o )  

qi  
f i =  1 - 2- ~ 

where qi  is the back tension exerted on the strip. 
From this boundary condition, c 1 is expressed as 

c I = Bi  ealmi [ 13] 

Therefore, the specific rolling pressure qi) in zone I is ex- 
pressed as 

"l~Di--al0~ 2FC03 (O2 1 
./i = B,.e e + alL3~-- - a l  + s I m - t I J 

[14] 

where 
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1 2 
t l = a-~- + a~l 

3 

2 
S l = l + a 2  

(o2 ,1 
- - - - - -  + Sl(Oi--  / 1 |  

a I A 

When the peripheral  velocity of the upper roll (VI) is less 
than that of the lower roll (V2), zone II is Xn2 <_x <_ Xnl and 

~le = - g  1 + bt2" 

2 . 2 . 3  Z o n e  II  (xn2 <-x _<Xn~ ) lae = - la l  + l, t2 

Due to the continuity of the boundary conditions at x = xn2 
(or o /=  Oln2), the specific rol l ing pressure in zone III Ociii) a tx  = 
Xn2 must be equal to that in zone II qil),  i .e. ,fi i i  =fII.  Therefore,  
c 3 and c 2 have a relat ionship as follows: 

n2 + s3~0n2 _ t3 l c3 e-a3mn2 + ~-r  _ (O2 
a3L a 3 - 

~r  0)3 2 0)2n2+ - '2] 
c2e-a2mn2 + a2k 3 a 2 s2(on2 [151 

However,  due to the continuity of  the boundary condit ions at x 

= Xnl, i.e.,J] = j ] l  

2 
cle-almnl+ ~{-m31 _ (Onl + Sl(onl _ tl ] 

a l l  a 1 

2 
__Cae-aaO,)nl 2__[0)31 ~ n l +  t2 ] 

+ a2 L 3 a 2 s2(Onl - [161 

From Eq 15, c 2 is expressed as 

BlOln2 c 2 = c3e 

a2mn2 (/~ ~,~3 _/~ .,.2 _ B5 ) + e ~ 2 w n 2  u3~,n2 + B4(On2 

where 

2 2 
B 1 = a  2 - a 3 , B  2 -  3a 3 3a 2 

2 2 2 S 3 2 S 2  
B3 - a23 a2'  B4 = a3 a2 

2t 3 2t 2 

B5 a 3 a 2 

[171 

a-to r(o 3 

al  L 3 a I Sl(on I 

2 av(onl (0331 2 I - - - e  - - C t BlOln2 (Onl + s2(On)-- 3" 
a 2 ~ 3 a 2 

_ a2mn2(B m3 _ B3m22 B4mn2-  B5) e ~ 2 .2  + = 0  [181 

where 

Xn I Xn2 
(onl = tan-I ~ e q  rt~ (on2 = tan-I  Vrte'U~qh ~ 

B 6 = a 2 - a I 

F rom the constancy of  volume, the posit ions of the upper and 
lower neutral points Xnl and Xn2 have the fol lowing relation- 
ship: 

,~ / xt22 h o 
Xnl = R1 'q V A ~  + (V A -  1)~A A 

R 1 
[19] 

where 

v A = ~ - I , R A = ~  - 1 R2) 

Substi tute Eq 19 into Eq 18, the solution of the neutral point Xn2 
can be determined easily using the bisection numerical  method. 
Because Xn2 is known, Xnl and c 2 can be obtained by Eq 17 and 
19. 

Then, the specific roll ing pressure 0Cil ) in zone lI  can be ob- 
tained as: 

= a2(o+ 2~-(O3 (O2 t 
fll  c2e a2~- ~ a2 + S2(O - t2 [201 

where 

1 2 2 
12 = - - + = - ' s 2 3  : 1 + - -  

a2 a~ a 2 

2 . 3  R o l l i n g  F o r c e  

Once the yielding stress and coefficient  of friction are 
known, the rolling lbrce can be found by integrating the normal 
rolling pressure over the arc length of contact. Thus, the rolling 
force per unit width is given by: 

P = PII t  + PII +PI  [21] 

Substituting Eq 17 into Eq 16 yields where 
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Pill : 2 k ;  n2 Jill dx : 2k*'~eqho (IIII + II12) 
0 

[221 
T 1 = R I ( P lP  1 - b t l P i i -  lalPIII)  

= PNR1 ( P I -  PII - PIll ) [25] 

-a3mn2( 2o)n2 a~  ] c 3 2 c  3 -c3e 2 
III  1 1 + ( 0 n 2 + - - +  + - - +  

a3 ~ a3 3) a3 a33 

= . - + t  3 lli2 con2 2 1 
9a 3 5a2 + ~176 ~ 3 n2 

2 
s3con2 2t3con2 + - -  

a 3 a 3 

PII 2 k ;  nl.]]l dx = 2k~Req(h o(lll  = + 1 I2) 
Xn2 

[23] 

C e -a2mnl( 2COnl - -  L 2 + 2 ] +  o)n6. 2~ 
ii 1 _ -  2 1 +CO nl + a2 ~ a  2 5a 2 

a2 a 2 j 

1/~. +s.z 4 _ 2 (1  + ~ s2m2 2t2 
t 3 - ~22conl + 2 ~ - 2 0 ) n l  3a2~a2 2 nl + a2 nl 

2 2 . 2  + 2 / -  + 
I12 - - - a 2  ~ 1 + COn2 + a2 a~_) a2 5a 2 

1 / 3 + s 2 4  2 (~22 s" 2t �9 ~ 3  ' 2  2 2 
2a 2 COn2 3~-a2 + + t 2)t0n2 - a2mn2 + a72 co,, 2 

rL 
P1 = 2 k J  fldX = 2kqReqho(I 1 + 12) 

Yn I 
[24] 

T 2 = R2(~2PI + P2PII - ~t2Plli) 

= bt2R2(PI + Pit - Pill ) [261 

2 . 5  Special Case 

When the frictional coefficient between the upper  roll and 
the strip (~tl) is equal to the frictional coefficient between the 
lower roll and strip ([.t2), Eq l 1 and 12 are still valid. However ,  
both Eq 20 and 23 no longer apply, because ~t e (or a2) is zero in 
zone II. Therefore,  the equations derived previously concern- 
ing pressure distribution become meaningless and modifica- 
tions have to be made. 

From Eq 3, let ~a e be zero, the specific rolling pressure in 
zone II can be expressed as: 

fll  = In h + c 2 [27] 

where c 2 is the integral constant determined by the boundary 
conditions. 

Fol lowing the same procedures with the same boundary 
conditions as described earlier, the equation that was used to 
find the neutral point Xn2 is expressed as: 

l 2 1 - a  1 O)3 1 COn 1 
c l e  mnl+ a l l  3 a I + Slo)nlJ 

f 3 m2 ! 
_ r176 n 2  

c3 e-a3mn2 - + s30)n2 - F = 0 
a3L 3 a 3 - 

[28] 

-cle-a'~ +o)2q_~+~[[l COP 2035 
I 1 - + 

al ~ 9al 5a f  

+ 2aaT-al o)i - ~ ~11 + tl ~ + al a l  

C e -almnl(  2ran t .  2 ] m6i 2(051 
2 +_  T . .~ /_  _ _  + 12 I [l  + conl al 5a 2 

al ~ al ) 9al  

}.~ 2 2tlmnl 1/3 + Sl 4 3 + _ _  + 2_2_( [ + SlO)nl 
2a 1 mnl 3a lga l  tl n l -  al al 

2 . 4  Rolling Torque 

The rolling torque, T 1 and T 2, exerted by strip on the upper 
and lower roll, respectively, can be calculated by integrating 
the moment  of  the frictional force along the arc of  contact about 
the roll axis. Therefore: 

where 

F = ln V2 + 2tl 2t3 

V 1 a I a 3 

(Onl = tan -1 Xnl 
~ e q h  o 

COn2= tan - I  Xn2 
~ e q h  o 

Combining  Eq 19 and 28, the neutral point xn2 and xnl can be 
obtained, and c 2 is expressed as: 

[-O)3 2 7 
-a3m,, ~ ~ ,72 CO'z2 + s~m ~ - t3~-  lnhn2 [29] 

c2 = c3e - - + a3 L 3 a3 o ,z_ 

The rolling force per unit width can be derived as: 
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Fig. 3 Specific rolling pressure comparison of results obtained 
using the analytical method and the numerical method in asym- 
metrical rolling. 

rx 
= 2 k |  n 1 

PI1 __ flI  dx = 2k[Iln + c2(Xnl - Xn2)] 
Xn2 

[301 

where 

II n = Xnl In hnl - 2Xnl + 2X[Reqh o tan -1 - -  

- Xn2 In hn2 + 2Xn2 - 2~Reqh o tan -1 I 

2 x 2 
Xn2 n 1 

hn2=h o + ~ - , h n l  =h o + -  
Req "eq 

Xn I 

~-Reqho 

Xn2 

~/Reqk o 

It should be noted that Eq 28 to 30 are only valid for the case of  

Ml = g2' 

2.6 Limi t ing  Analys i s  

For the purpose of  finding the limiting conditions, at which 
the rolling process cannot be achieved, for roll speed ratio and 
reduction, let Xn2 be zero and V 2 > V l, then Eq 19 becomes: 

~ /  h~ 
Xnl = R  1 (V A - I ) ~ A  [311 

Substituting the above equation into Eq 28, the fol lowing rela- 
tionship can be derived: 

•[ 3 m2 ] 
~ nl +Sl~ - F = 0  cle-al~ _ c 3 + a l l  I 3 a I 

J 
[32] 

Note that the equation is valid only for gl  = bt2" By this equa- 
tion, the limiting condit ion between the roll speed ratio and re- 

4 ; RI =R2 =i00/re'n, r=30% 

-2 

ra~ 

.S 
O 

hi=l. 786mm, p,2 =I/.i =0 �9 2 
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"2=1 02o_ ql-0 

v, v~ ~-~--ff~- 
�9 . :~.)/\ 

v~ i 

xi t  entrance ' 
i 
i 

I [ I 1 I I , 
2 3 4 5 6 7 

Contact Le ngt h  ( m m  ) 

Fig. 4 Specific rolling pressure for various roll speed ratios. 

duction can be determined. Likewise,  if  g l  ~ g2, Eq 18 be- 
comes; 

2 a#0 ,Fc03 2 ] 
e " "'1 nl Wnl I C1 eB6mnl + + - t 1 

al L 3 a I Slmnl 

2e ? ,,1 ~nl m~l + s30)nl - t 2 - c 3 + B 5 = 0 [33] 
a2 L 3 a 2 - 

in Eq 32 and 33, C0nl is the specific upper neutral position 
known, whereas V A is the roll speed ratio to be determined. 
Consequently,  V A can be determined using the bisection nu- 
merical method. 

For the case of  front tension (qo), the front tension cannot be 
increased so greatly that the neutral point Xnl is out of  the con- 
tact arc, i.e., Xnl > L. The limiting (or critical) value of  qo, in 
which Xnl is equal to L, can be expressed as: 

l, 2'-2 / 
qo= 2 % =  2k 3 -  a3 ) [34] 

where 

2 ~ ~ + s30)n2 - F 
a3~ 3 a 3 

~On2 = tan -1 Xn2 
~Req h o 

RAL2 R~(VA_ 1)h ~ 
Xn 2 = RA VA 

t- Sl COil 
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Fig. 5 Specific rolling pressure for various front and back ten- 
sions. 
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Fig. 7 Specific roiling pressure for various friction coefficient 
ratios. 
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Fig. 6 Specific rolling pressure for various reductions. 

3. Results and Discussion 

To verify the accuracy of this analytical model, a compari- 
son of the results obtained by the analytical method and those 
from the numerical method was performed, as shown in Fig. 3. 
The numerical results were obtained using the Runge Kutta 
method by simultaneously solving the governing equations, 
such as Eq 1, 2, and 4 for zone I, with the boundary conditions 
Po = 2k  - qo atx = 0 andpi = 2k - qi atx = L, as well as the pre- 
diction equation for neutral points (Eq 19). When g is small, 
both rolling pressure distributions coincide with each other. If 
g is larger than 0.25, only a small margin of error exists. Hence, 
this newly proposed analytical model simulates the asymmetri- 
cal rolling process, with the added advantage of reduced calcu- 
lation time. Generally, when the frictional coefficient 
increases, the rolling pressure increases, and the neutral points 
are positioned away from the exit. 

Figure 4 shows that the rolling pressure decreases with in- 
creasing roll speed ratio, V 2/ V  1, because the friction hill is cut 
off. Namely, the cross shear region (zone 11), which causes the 

Fig. 8 Variation of rolling force with roll speed ratio for various 
front and back tensions. 

decrease in rolling pressure, widens with increasing roll speed 
ratio, V 2 / V  1. 

Figure 5 illustrates the rolling pressure distributions along 
the contact length with different back and front tensions. When 
front and back tensions are applied, the overall rolling pressure 
is reduced. Additionally, an increase in back tension causes the 
neutral points to move toward the exit, whereas an increase in 
front tension causes the neutral points to move toward the entry. 
The phenomenon is the same as in symmetrical strip rolling. 

The variation in rolling pressure for different thickness re- 
ductions is illustrated in Fig. 6. It appears that the larger the re- 
duction, the larger the rolling pressure, and the cross shear 
region (CSR) becomes narrower. Additionally, the position of 
the CSR moves toward the center of the contact length when the 
reduction increases. 

Figure 7 shows the variation in rolling pressure with various 
frictional coefficient ratios, B2/B 1- Obviously, the total rolling 
pressure increases with an increase in ~2/B 1, and the position of 
the neutral points moves toward the entrance of the roll-bite as 
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Fig. 10(b) Variation of high-speed rolling torque with roll 
speed ratio for various front and back tensions. 
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Fig. 11 Limiting diagram of reduction and roll speed ratio for 
various friction coefficients (such as xn2 = 0). 

13 

1.5 

/d2/bt 1 increases. However ,  the position of the neutral point of  
the upper roll moves  faster than that of  the lower roll. Conse-  
quently, the rolling pressure at the neutral point of  the lower roll 
is largcr than that at the neutral point of the upper roll as bt2/P, t 
= 0.5, although the rolling pressure at the neutral point of  the 
lower roll is less than that at the neutral point of  the upper roll 

whcn bt2/bt 1 = 1.5. 
The effects of  roll speed ratio, V21V I, on rolling force and 

rolling torque are shown in Fig. 8 and 9, respectively. Rol l ing 
force and rolling torque are calculated by Eq 21 ,25 ,  and 26. It 
indicates, evidently, that both rolling force and rolling torque 
decrease with increasing roll speed ratio, V2/V 1 . However,  roll- 
ing force decreases with increasing front and back tension, 
whereas the total rolling torque decreases with the deviation of  
front and back tension. 

Figure 10(a) and (b) show the effect of variation in roll 
speed ratio on upper and lower roll torque. The upper roll 
torque, T 1, decreases with increasing roll speed ratio, whereas 
Ihe lower roll torque, T2, increases with increasing roll speed 

ratio, V2/V 1. The total rolling torque, however,  decreases with 
increasing roll speed ratio, as shown in Fig. 9. 

Figure 11 shows the limiting condition between reduction, 
r, and roll speed ratio, V2/V 1. For example,  when r = 30%, 
these limiting roll speed ratios are V2/V 1 = 1.17, 1.24, 1.29 for 
p = 0.1, bt = 0.15, bt = 0.2, respectively. In other words, when 
V2/V 1 = 1.17 for b t=0.1 ,  the limiting reduction r cannot be 
greater than 30%, or the rolling process fails. This type of 
analysis is important in asymmetrical  strip roll ing process. 

Figure 12 shows the effect o f R e q / h  i on the limiting reduc- 
tion r. The limiting roll speed ratio, V2/V t, increases with in- 
creasing Req./hi, because the average rolling pressure increase 
with increasing R eq /h  i. From Fig. 12, note, for example,  that 
when r = 31)% for bt = 0.2, these limiting roll speed ratios 

are V 2 / V I = 1.278 (Req / h i = 50), 1.306 (Ree t / h i = 8/)), and 
1.318 (Req / h i = 100), respectively. 

Figure 13 illustrates the effect of  limiting roll speed ratio, 
V2/V 1, on limiting reduction, r, and critical front tension, qo" As 
xn2 = 0, which means that the neutral point xn2 reaches the exit 
of  the roll gap earlier than Xnl reaches the entrance, it appears 
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Fig. 13 Limiting diagram of front tension and roll speed ratio 
for various reductions (such as Xnl = L or Xn2 = 0). 

that the critical front tension, qo, increases, at the same reduc- 
tion, r, with an increase in the limiting roll speed ratio, V2/V 1. 
For Xn2 = 0 and r = 30%, these limiting roll speed ratios are 
V2/V 1 = 1.197 (qo = 0), 1.225 (qo = 5 kg/mm2), 1.3 (qo = 15 
kg/mm2), 1.39 (qo= 25 kg/mm2), and 1.4278 (qo = 27.9 
kg/mm2), respectively. As Xnl = L, which implies that the neu- 
tral point Xnl reaches the entrance of the roll gap earlier than Xn2 
reaches the exit, the limiting roll speed ratio increases, at the 
same reduction, with decreasing critical front tension, qo" For 
Xnl = L, which denotes at the exit, when r = 30%, the critical 
front tension, qo, and roll speed ratio, V2/V1, are 46.247 
kg/mm 2 (1.197), 45.541 kg/mm 2 ( 1.225), 43.12 kg/mm 2 ( 1.3), 
37.674 kg/mm 2 (1.39), and 27.9 kg/mm 2 (1.4278), respec- 
tively. Figure 13 also illustrates that when reduction r increases 
in the same critical front tension qo, the limiting roll speed ratio, 
V2/V 1, increases because the average rolling pressure and the 
contact length are greater with increased reduction so as to 
bring about a larger limiting roll speed ratio, V2/V l. 
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Fig. 14 Comparison of rolling force results obtained using the 
analytical method and experimental measurements. 
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Fig. 15 Stress-strain curve. 

For the purpose of proving the validity of this approach, a 
comparison of predicted rolling force with experimental meas- 
urements by Yamamoto[ 11 ] is shown in Fig. 14. The experiment 
was carried out using a two-high mill with plaster rolls, and the 
stress-strain curve of the plasticine used as the test material is 
shown in Fig. 15. The margin of error between the results of the 
rolling tbrce obtained using this analytical method and the ex- 
perimental measurement is only about 10%, which provides 
good consistency. 

4. Conclusions 

According to a series of analytical results, it is concluded 
that evaluation of rolling force and rolling torque by the present 
model is fast and accurate. 
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The rolling pressures obtained using this analytical model  
and a numerical method were compared. They agree with each 
other very well. Moreover ,  compared with experimental  re- 
suits, rolling force was predicted very accurately. Roll ing pres- 
sure and rolling force can be significantly reduced using the 
asymmetrical  roll ing processes. Limiting rolling conditions, 
including reduction, roll speed ratio, and front tension, can be 
obtained easily, and rolling can be carried out successfully. 

Using this model,  one can quickly determine rolling pres- 
sure distributions, rolling forces, and rolling torques and limit- 
ing rolling conditions. It was concluded that the developed 
approach is acceptable and is able to offer systematic knowl- 
edge that is useful in designing asymmetrical cold strip rolling 
process. 
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